Monday, April 30, 2012

Serious Blow to Dark Matter Theories?


The most accurate study so far of the motions of stars in the Milky Way has found no evidence for dark matter in a large volume around the Sun. According to widely accepted theories, the solar neighbourhood was expected to be filled with dark matter, a mysterious invisible substance that can only be detected indirectly by the gravitational force it exerts. But a new study by a team of astronomers in Chile has found that these theories just do not fit the observational facts. This may mean that attempts to directly detect dark matter particles on Earth are unlikely to be successful.
A team using the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory, along with other telescopes, has mapped the motions of more than 400 stars up to 13 000 light-years from the Sun. From this new data they have calculated the mass of material in the vicinity of the Sun, in a volume four times larger than ever considered before.
The amount of mass that we derive matches very well with what we see — stars, dust and gas — in the region around the Sun,” says team leader Christian Moni Bidin (Departamento de Astronomía, Universidad de Concepción, Chile). “But this leaves no room for the extra material — dark matter — that we were expecting. Our calculations show that it should have shown up very clearly in our measurements. But it was just not there!
Dark matter is a mysterious substance that cannot be seen, but shows itself by its gravitational attraction for the material around it. This extra ingredient in the cosmos was originally suggested to explain why the outer parts of galaxies, including our own Milky Way, rotated so quickly, but dark matter now also forms an essential component of theories of how galaxies formed and evolved.
Today it is widely accepted that this dark component constitutes about the 80% of the mass in the Universe [1], despite the fact that it has resisted all attempts to clarify its nature, which remains obscure. All attempts so far to detect dark matter in laboratories on Earth have failed.
By very carefully measuring the motions of many stars, particularly those away from the plane of the Milky Way, the team could work backwards to deduce how much matter is present [2]. The motions are a result of the mutual gravitational attraction of all the material, whether normal matter such as stars, or dark matter.
Astronomers’ existing models of how galaxies form and rotate suggest that the Milky Way is surrounded by a halo of dark matter. They are not able to precisely predict what shape this halo takes, but they do expect to find significant amounts in the region around the Sun. But only very unlikely shapes for the dark matter halo — such as a highly elongated form — can explain the lack of dark matter uncovered in the new study [3].
The new results also mean that attempts to detect dark matter on Earth by trying to spot the rare interactions between dark matter particles and “normal” matter are unlikely to be successful.
Despite the new results, the Milky Way certainly rotates much faster than the visible matter alone can account for. So, if dark matter is not present where we expected it, a new solution for the missing mass problem must be found. Our results contradict the currently accepted models. The mystery of dark matter has just become even more mysterious. Future surveys, such as the ESA Gaia mission, will be crucial to move beyond this point.” concludes Christian Moni Bidin.

Notes

[1] According to current theories dark matter is estimated to constitute 83% of the matter in the Universe with the remaining 17% in the form of normal matter. A much larger amount of dark energy also seems present in the Universe, but is not expected to affect the motions of the stars within the Milky Way.
[2] The observations were made using the FEROS spectrograph on the MPG/ESO 2.2-metre telescope, the Coralie instrument on the Swiss 1.2-metre Leonhard Euler Telescope, the MIKE instrument on the Magellan II Telescope and the Echelle Spectrograph on the Irene du Pont Telescope. The first two telescopes are located at ESO’s La Silla Observatory and the latter two telescopes are located at the Las Campanas Observatory, both in Chile. A total of more than 400 red giant stars at widely differing heights above the plane of the galaxy in the direction towards the south galactic pole were included in this work.
[3] Theories predict that the average amount of dark matter in the Sun’s part of the galaxy should be in the range 0.4-1.0 kilograms of dark matter in a volume the size of the Earth. The new measurements find 0.00±0.07 kilograms of dark matter in a volume the size of the Earth.

More information

This research was presented in a paper, “Kinematical and chemical vertical structure of the Galactic thick disk II. A lack of dark matter in the solar neighborhood”, by Moni-Bidin et al. to appear in The Astrophysical Journal.
The team is composed of C. Moni Bidin (Departamento de Astronomía, Universidad de Concepción, Chile), G. Carraro (European Southern Observatory, Santiago, Chile), R. A. Méndez (Departamento de Astronomía, Universidad de Chile, Santiago, Chile) and R. Smith (Departamento de Astronomía, Universidad de Concepción, Chile).
The year 2012 marks the 50th anniversary of the founding of the European Southern Observatory (ESO). ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 40-metre-class European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.


Links

Contacts

Christian Moni Bidin
Universidad de Concepción
Concepción, Chile
Tel: +56 9 9210 3235
Email: cmbidin@astro-udec.cl
Giovanni Carraro
ESO
Santiago, Chile
Email: gcarraro@eso.org
René A. Méndez
Department of Astronomy, University of Chile
Santiago, Chile
Email: rmendez@u.uchile.cl
Rory Smith
Universidad de Concepción
Concepción, Chile
Email: rsmith@astro-udec.cl
Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Sunday, December 26, 2010

Durham astronomers’ doubts about the “Dark Side”

(16 June 2010)

New research by astronomers at Durham University suggests conventional wisdom about the content of the Universe may be wrong.

Graduate student Utane Sawangwit and Professor Tom Shanks, in Durham's Department of Physics, looked at observations from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite to study the remnant heat from the Big Bang.

The two scientists found evidence that the errors in its data may be much larger than previously thought, which in turn makes the standard model of the Universe open to question.

They published their results in a letter to the journal Monthly Notices of the Royal Astronomical Society.

Launched in 2001, WMAP measures differences in Cosmic Microwave Background (CMB) radiation, the residual heat of the Big Bang that fills the Universe and appears over the whole of the sky.

The angular size of the ripples in the CMB is thought to be connected to the composition of the Universe. The observations of WMAP showed that the ripples were about twice the size of the full Moon, or around a degree across.

With these results, scientists concluded that the cosmos was made up of four per cent 'normal' matter, 22 per cent 'dark' or invisible matter and 74 per cent 'dark energy'. Debate about the exact nature of the 'dark side' of the Universe - the dark matter and dark energy - continues to this day.

Sawangwit and Shanks used astronomical objects that appear as unresolved points in radio telescopes to test the way the WMAP telescope smoothes out its maps. They found that the smoothing is much larger than previously believed, suggesting that its measurement of the size of the CMBR ripples is not as accurate as was thought.

If true this could mean that the ripples are significantly smaller, which could imply that dark matter and dark energy are not present after all.

Professor Shanks said: "CMB observations are a powerful tool for cosmology and it is vital to check for systematic effects.

"If our results prove correct then it will become less likely that dark energy and exotic dark matter particles dominate the Universe. So the evidence that the Universe has a 'Dark Side' will weaken."

In addition, Durham astronomers recently collaborated in an international team whose research suggested that the structure of the CMB may not provide the robust independent check on the presence of dark energy that it was thought to.

Utane Sawangwit said: "If our result is repeated in new surveys of galaxies in the Southern Hemisphere then this could mean real problems for the existence of dark energy."

If the Universe really has no 'dark side', it will come as a relief to some theoretical physicists. Having a model dependent on as yet undetected exotic particles that make up dark matter and the completely mysterious dark energy leaves many scientists feeling uncomfortable.

It also throws up problems for the birth of stars in galaxies, with as much 'feedback' energy needed to prevent their creation as gravity provides to help them form.

Professor Shanks added: "Odds are that the standard model with its enigmatic dark energy and dark matter will survive, but more tests are needed.

"The European PLANCK satellite, currently out there collecting more CMB data will provide vital new information and help us answer these fundamental questions about the nature of the Universe we live in."

Friday, August 27, 2010

Comets

There is another possibility that remains unexamined. It takes account of the obvious electrical nature of comets, which is the only model to successfully predict what would be found by the Deep Impact experiment.

The flaw in the conventional approach is that only gas-phase chemical reactions and reactions induced by solar radiation (photolysis) are considered. The far more energetic molecular and atomic reactions due to plasma discharge sputtering of an electrically charged comet nucleus are not even contemplated [see below]. Yet this model solves many comet mysteries that are seldom mentioned.

The hydroxyl radical, OH, is the most abundant cometary radical. It is detected in the coma at some distance from the comet nucleus, where it is assumed that water (H2O) is broken down by solar UV radiation to form OH, H and O. It is chiefly the presence of this radical that leads to estimates of the amount of water ice sublimating from the comet nucleus. The comas of O and OH are far less extensive than the H coma but have comparable density.

The negatively charged oxygen atom, or negative oxygen ion, has been detected close to cometary nuclei. And the spectrum of neutral oxygen (O) shows a "forbidden line" indicative of the presence of an "intense" electric field. The discovery at comet Halley of negative ions puzzled investigators because they are easily destroyed by solar radiation. They wrote, "an efficient production mechanism, so far unidentified, is required to account for the observed densities." And the intense electric field near the comet nucleus is inexplicable if it is merely an inert body ploughing through the solar wind.

Let's see how the electrical model of comets explains these mysteries. The electric field near the comet nucleus is expected if a comet is a highly negatively charged body, relative to the solar wind. Cathode sputtering of the comet nucleus will strip atoms and molecules directly from solid rock and charge them negatively. So the presence of negative oxygen and other ions close to the comet nucleus is to be expected. Negative oxygen ions will be accelerated away from the comet in the cathode jets and combine with protons from the solar wind to form the observed OH radical at some distance from the nucleus.

The important point is that the OH does not need to come from water ice on, or in, the comet. Of course, some water is likely to be present on a comet or asteroid. It depends upon their parent body. And since there are many moons in the outer solar system and the rings of Saturn with copious water ice, we may expect some smaller bodies like comets and asteroids to have some too. But what is obvious from the closeup images of comet nuclei is that they look like dark, burnt rocks. They do not look icy. Their appearance fits the electrical model and not the poorly consolidated dirty ice model.

Tuesday, August 24, 2010

Electric Sun

Countless billions of dollars have been wasted based on the thermonuclear model of stars. For example, trying to generate electricity from thermonuclear fusion, “just like the Sun.” The thought that solar scientists have it completely backwards has not troubled anyone’s imagination. The little fusion power that has been generated on Earth has required phenomenal electric power input, “just like the Sun!” The Sun and all stars consume electrical energy to produce their heat and light and cause some thermonuclear fusion in their atmospheres. The heavy elements formed there are seen in stellar spectra. It explains why the expected solar neutrino count is low and anti-correlated with sunspot numbers. It explains why many stars are considered “chemically peculiar.” Get the physics right first and the mathematics will follow.

http://www.holoscience.com/news.php?article=ah63dzac#top

Sunday, August 22, 2010

A Mystery Solved

A Mystery Solved - Welcome to the Electric Universe!

"We simply do not have a truly unified view of the world, one that paints an unambiguous picture of some overall scheme. ...one invariably confronts a deep fissure that can be overcome only with revolutionary new ideas."

Etienne Klein & Marc Lachièze-Rey, THE QUEST FOR UNITY - The Adventure of Physics.

NASA has confirmed a “deep fissure” in our understanding of the universe. The answer, though revolutionary, is simple. But it implies that the real nature of the universe is nothing like the fanciful stories we are being told. So who will have the courage to listen? Robert Matthews, Science Correspondent for The Sunday Telegraph filed this report:


Mysterious force holds back NASA probe in deep space
A SPACE probe launched 30 years ago has come under the influence of a force that has baffled scientists and could rewrite the laws of physics.

Researchers say Pioneer 10, which took the first close-up pictures of Jupiter before leaving our solar system in 1983, is being pulled back to the sun by an unknown force. The effect shows no sign of getting weaker as the spacecraft travels deeper into space, and scientists are considering the possibility that the probe has revealed a new force of nature. Dr Philip Laing, a member of the research team tracking the craft, said: “We have examined every mechanism and theory we can think of and so far nothing works.” “If the effect is real, it will have a big impact on cosmology and spacecraft navigation,” said Dr Laing, of the Aerospace Corporation of California.

Pioneer 10 was launched by NASA on March 2 1972, and with Pioneer 11, its twin, revolutionised astronomy with detailed images of Jupiter and Saturn. In June 1983, Pioneer 10 passed Pluto, the most distant planet in our solar system. Both probes are now travelling at 27,000mph towards stars that they will encounter several million years from now. Scientists are continuing to monitor signals from Pioneer 10, which is more than seven billion miles from Earth.


Research to be published shortly in The Physical Review, a leading physics journal, will show that the speed of the two probes is being changed by about 6 mph per century - a barely-perceptible effect about 10 billion times weaker than gravity. Scientists initially suspected that gas escaping from tiny rocket motors aboard the probes, or heat leaking from their nuclear power plants might be responsible. Both have now been ruled out. The team says no current theories explain why the force stays constant: all the most plausible forces, from gravity to the effect of solar radiation, decrease rapidly with distance.


The bizarre behaviour has also eliminated the possibility that the two probes are being affected by the gravitational pull of unknown planets beyond the solar system. Assertions by some scientists that the force is due to a quirk in the Pioneer probes have also been discounted by the discovery that the effect seems to be affecting Galileo and Ulysses, two other space probes still in the solar system. Data from these two probes suggests the force is of the same strength as that found for the Pioneers.
Dr Duncan Steel, a space scientist at Salford University, says even such a weak force could have huge effects on a cosmic scale. "It might alter the number of comets that come towards us over millions of years, which would have consequences for life on Earth. It also raises the question of whether we know enough about the law of gravity."

Until 1988, Pioneer 10 was the most remote object made by man - a distinction now held by Voyager 1.

© Text copyright of Telegraph Group Limited 2002.
>> Go to original article.


Solution of the mystery:
Common sense suggests that it is unlikely that the laws of physics will need to be rewritten, simply that we should understand better those we have. We need not trouble ourselves with arguments about the nature of gravity in this instance because the mystery can be solved if the electrical nature of the universe is acknowledged. The mystery only arises because astrophysics is taught incorrectly. Students are taught that any separation of charge in space is quickly neutralized as electrons rush to neutralize the charge imbalance. As a result, electricity in space is almost never mentioned, except as a transient effect. So no astrophysicist would think to ask the question of whether there is a steady interplanetary electric field. They have not "examined every mechanism and theory."


It is always assumed that there is a source of electrons to meet any deficiency and that they can be supplied faster than the charging process. However, space is a far better vacuum than any we can achieve on Earth, so the assumption that there are sufficient electrons available may not be true. And where there are sufficient electrons, in their rush to neutralize the electric field they may undergo the magnetic “Z pinch” effect that cuts off the current at some maximum value before recovering and beginning the cycle once more. In fact, observations of energetic activity in space on all scales show this kind of “bursty” behavior. The most recent example came from Jupiter and was reported by Scientific American on March 4 as “a mysterious X-ray ‘hot spot’ that flares up like a beacon every 45 minutes.” We produce X-rays every day in industry and medicine by using electrical discharges. Why would Nature do it any other way?


In our electric universe the forces between charged objects is of the same form as Newton's equation, with charge replacing mass. The BIG difference is that the electrical force is about 10^39 times stronger than gravity. So if there is an electric field in space, it will have a measurable effect on a charged spacecraft.


Ralph Juergens, 1949.

An electric field in space can give rise to electric discharge phenomena like those seen in a low-pressure gas. The most familiar example is the neon tube, and for some lucky people–the wonderful natural spectacle of an aurora. Extensive research was done on gas discharges early in the 20th century but its application to solar physics, pioneered briefly in the 1970’s by an engineer from Flagstaff, Arizona, Ralph Juergens, was perforce published in an obscure journal and permitted to sink without trace.


This is a diagram showing a discharge tube with all of the important features annotated above the tube. [D.S. = dark space]. Note that in the Sun’s huge environment, the only bright regions are very close to the Sun because the energy density is too low to excite a glow. Below the tube are graphs showing the variation of important variables along the tube length. The simple discharge tube demonstrates some of the complexity of electric discharges in near vacuum and surprisingly it holds the key to the mystery of spacecraft deceleration.


Diagram from Gaseous Conductors, by James D. Cobine, Dover Publications.


As Juergens argued, within our solar system the Sun bears all of the hallmarks of a small spherical anode in a galactic discharge. The planets occupy a vast region within the heliosphere, known in gas discharge theory as the positive column, which has a weak electric field centered on the Sun. Unlike the thin neon tube, the Sun occupies a vast sphere more than 16 billion miles across, so the positive column disappears and the current is carried throughout that volume by a low density of ionization. It requires only that the Sun’s electric field has sufficient strength to cause a drift of electrons toward the Sun, superimposed on their random thermal motion. In other words, it is immeasurably small. Notice that the net charge density in the positive column is zero. In other words, there are an equal number of negative and positive charges in interplanetary space. That is what spacecraft have generally found.


The regions of high electric field are close to the anode and cathode. In the Sun’s case, being the anode, it is in the corona, where electrons are accelerated toward the Sun, causing the apparent million-degree temperatures there, and the protons are accelerated away from the Sun–to form the solar “wind.” The continued acceleration of the positive particles in the solar wind beyond the orbits of Mercury and Venus is a natural consequence of the same weak electric field that slows down the negatively charged spacecraft. The cool photosphere beneath a “hot” corona is, for the first time, understandable if the Sun’s energy is delivered externally.


Of course, the Sun does not have an identifiable cathode in space like the metal cathode in the glow discharge tube. Instead, the plasma in space forms a bubble, known as a “virtual cathode.” Effectively it is the heliopause. In plasma terms, the heliopause is not a result of mechanical shock but is a Langmuir plasma sheath that forms between two plasmas of different charge densities and energies. In this case it forms the boundary between the Sun’s plasma and that of the galaxy. Such “bubbles” are seen at all scales, from the comas of comets to the ‘magnetospheres’ of planets and stars. To the plasma engineer they show that the central body is electrically charged relative to its surroundings.


After launch, a spacecraft accepts electrons from the surrounding space plasma until the craft’s voltage is sufficient to repel further electrons. Near Earth it is known that a spacecraft may attain a negative potential of several tens of thousands of volts relative to its surroundings. So, in interplanetary space, the spacecraft becomes a charged object moving in the Sun’s weak electric field. Being negatively charged, it will experience an infinitesimal “tug” toward the positively charged Sun. Of most significance is the fact that the voltage gradient, that is the electric field, throughout interplanetary space remains constant. In other words, the retarding force on the spacecraft will not diminish with distance from the Sun. This effect distinguishes the electrical model from all others because all known force laws diminish with distance. The effect is real and it will have a fundamental impact on cosmology and spacecraft navigation because…


Pioneer 10 has confirmed the electrical model of Stars!


Pioneer 10 is now 7.4 billion miles from Earth, maybe 90 percent of the way to the heliopause. The electrical model of the solar system predicts that additional anomalies will be found if a distant spacecraft encounters the heliopause while still in contact with Earth. For the heliopause is the “cathode drop” region of the Sun’s electrical influence. It is a region of strong radial electric field, which will tend to decelerate the spacecraft more strongly. Almost the full difference between the Sun’s voltage and that of the local arm of the galaxy is present across the heliopause boundary. As a result, it is the region where so-called “anomalous” cosmic rays are generated by the strong field. It has nothing to do with a shock front and some poorly defined acceleration mechanism. Some measure of the driving electrical potential of the Sun may be gained from the study of “anomalous” cosmic rays. Also we can deduce the driving potential of other stars by the study of normal cosmic rays.


The implications of an electrical dimension to stars are profound. Obviously, if we do not understand our closest star, all speculation about more distant stars and their histories are misguided. Of course, it begs the question of the power source that maintains the galactic charge differentials to power stars. It is here that the electric star hypothesis merges seamlessly with plasma cosmology, which also had its origin in electrical engineering. Plasma cosmology, which is now recognized by the IEEE, is practically unknown amongst astronomers and astrophysicists. The latter have been content to ignore the warnings of Hannes Alfvén, the “father” of plasma physics and plasma cosmology, that their use of plasma theory is outdated and wrong.


For example, the spiral arms of a galaxy must carry the electric current that lights the stars. The force between parallel currents varies inversely with distance, instead of the much more rapid fall-off of gravity with the square of the distance. The result is that the longest-range force law in the universe governs galactic motions, and short-range repulsion maintains the integrity of the spiral arms. In comparison, by using the puny force of gravity astrophysicists must insist on the cranky notion that most of the mass in the universe is invisible and distributed in arbitrary fashion. Even so, they cannot explain the preferred spiral structure of galaxies.

Monday, June 14, 2010

Alfven's Take

To Alfvén, the Big Bang was a myth - a myth devised to explain creation. "I was there when Abbe Georges Lemaitre first proposed this theory," he recalled. Lemaitre was, at the time, both a member of the Catholic hierarchy and an accomplished scientist. He said in private that this theory was a way to reconcile science with St. Thomas Aquinas' theological dictum of creatio ex nihilo or creation out of nothing.

But if there was no Big Bang, how -and when- did the universe begin? "There is no rational reason to doubt that the universe has existed indefinitely, for an infinite time," Alfvén explained. "It is only myth that attempts to say how the universe came to be, either four thousand or twenty billion years ago."

"Since religion intrinsically rejects empirical methods, there should never be any attempt to reconcile scientific theories with religion he said. An infinitely old universe, always evolving, may not, he admited, be compatible with the Book of Genesis. However, religions such as Buddhism get along without having any explicit creation mythology and are in no way contradicted by a universe without a beginning or end. Creatio ex nihilo, even as religious doctrine, only dates to around AD 200" he noted. The key is not to confuse myth and empirical results, or religion and science."

Alfvén admited that his plasma universe theory may take a long time to penetrate the popular consciousness. "After all," he asserted to a group of physicists, "most people today still believe, perhaps unconsciously, in the heliocentric universe." The group, at first incredulous, quickly nods in agreement as Alfvén continueed, "every newspaper in the land has a section on astrology, yet few have anything at all on astronomy."

Friday, February 5, 2010

Electric Sun verified

Original Article

NEWS ITEM
20 October 2009
Electric Sun Verified

�Is it likely that any astonishing new developments are lying in wait for us? Is it possible that the cosmology of 500 years hence will extend as far beyond our present beliefs as our cosmology goes beyond that of Newton?�
�Fred Hoyle, The Nature of the Universe


NASA's IBEX (Interstellar Boundary Explorer) spacecraft has made the first all-sky maps of the boundary between the Sun�s environment (the heliosphere), and interstellar space. The results, reported as a bright, winding ribbon of unknown origin which bisects the maps, have taken researchers by surprise. However, the discovery fits the electric model of stars perfectly.

IMAGE
>> Voyagers 1 and 2 (V1 and V2 above) reached the boundary of the Sun�s influence in 2005 and 2007, respectively, taking measurements as they left the solar system. Before IBEX, there was only data from these two points at the edge of the solar system. While exciting and valuable, the data they provided about this region raised more questions than they resolved. IBEX has filled in the entire interaction region, revealing surprising details completely unpredicted by any theories. This shows some of the fine detail of the ribbon in the blow-up section. Credit: SwRI [Click all images to enlarge].

The meter-wide, hexagonal IBEX monitors the edge of the solar system from Earth orbit by �seeing� the heliosphere�s outer boundary in the �light� of energetic neutral hydrogen atoms (ENA�s). The news releases of October 15 highlighted the difficulties this discovery causes. �The thing that�s really shocking is this ribbon,� says IBEX principal investigator David McComas of Southwest Research Institute in San Antonio, Texas. Researchers had expected gusts in the solar wind blowing against the boundary to create 20% or 30% variations in ENA emissions, but the ribbon is 10 times that intense�a narrow band blazing across the sky like some Milky Way on fire. Charged particles have apparently become bunched along the ribbon near the boundary, says McComas, but how they got there �is still a big mystery. Our previous ideas about the outer heliosphere are going to have to be revised." �I�m blown away completely,� says space physicist Neil Murphy of NASA�s Jet Propulsion Laboratory in Pasadena, California. �It�s amazing, it�s opened up a new kind of astronomy.�

IMAGE
>> Annotated summary of basic findings from the ENA maps of the heliosheath by researchers from the Saturn Cassini mission. Credit: S. M. Krimigis et al., The Johns Hopkins University Applied Physics Laboratory.

"The expectations of NASA scientists are not being met because their shock front model is incorrect. The boundary that Voyager has reached is more complex and structured than a mechanical impact.� �Wal Thornhill, September 2006.

IMAGE
>> The publicized image of the Sun�s interaction with interstellar space is like the shock front of a supersonic aircraft. We are told the �magnetic bubble� of the heliosphere protects us like a cocoon as the Sun and its planets travel through the Milky Way. The concept of Langmuir�s plasma sheath is entirely missing from this picture. It is electrically inert. Image credit: Adler Planetarium/Chicago

IBEX has discovered that the heliosheath is dominated not by the Sun but by the Galaxy�s magnetic field. Since the galaxy's magnetic field traces the direction of interstellar electric current flow in space near the Sun, it is a result that conforms to the EU model of galaxies and stars.

It is necessary to acknowledge that the cometary heliosphere model seems reasonable when some images of stars do have a cometary appearance. Examples of cometary stars are provided in the NASA news report:

IMAGE
>> This image shows photographs of the heliospheres around other stars (called astrospheres) taken by a variety of telescopes. Credit: SwRI [Note that the title of the original has been changed here from �Astrospheres� because it makes the unsupported assumption that all stars have them in this cometary form].

Cometary phenomena are not a simple mechanical effect of an object plowing through a thin gas. Comets are an electrical phenomenon where the comet nucleus is a negative cathode in the Sun�s plasma discharge. Examples of cometary stars are uncommon because stars are normally a positive anode in the galactic discharge. Characteristically, cathodes tend to jet matter into the plasma to form spectacular comas and tails, as seen above. Stars may become comets in the process of electrical capture by a more highly charged star. It is a mistake to assume a cometary astrosphere model for all stars.

However, a more fundamental conceptual error is to invoke stellar and galactic �winds� and the notion of tails being �swept downstream.� Astrospheres and comets are plasma discharge phenomena! Electrodynamic forces govern them. Discussions about the �external magnetic forces of the galactic wind� dominating the shape of the heliosphere highlights a curious blindspot in astrophysics. In 1970 the late Hannes Alfv�n counseled against the notion that magnetic fields can exist in space while ignoring their origin in cosmic electric currents and their circuits. Alfv�n predicted an imminent �crisis in cosmology.� I�m sure he never imagined that scientific revolutions could take a century or more in this era of global communication. But specialism and specialist jargon is the enemy of communication and the wide-ranging investigation needed to compose the �big picture� we call cosmology. And no scientist likes to admit their specialty is in crisis.

For a more detailed perspective on the astrophysical crisis, I recommend my earlier article of April 2007, �The Astrophysical Crisis at Red Square.� There I wrote, �Alfv�n pioneered the stellar circuit concept and it seems his 'wiring diagram' is essentially correct but incomplete because it does not show the star's connection to the larger galactic circuit. Alfv�n remarked, "The [stellar] current closes at large distances, but we do not know where." Plasma cosmologists have supplied the answer by mapping the currents flowing along the arms of spiral galaxies. It is but a small step from there to see that all stars are the focus of Z-pinches within a galactic discharge. Normally the current flows in 'dark mode' so we don't usually see the spectacular bipolar 'wiring harnesses' of hyperactive stars.� The diagram appearing in that article is shown below, re-annotated.

IMAGE

>> In 2007, twenty years after it was discovered, �the origin of the triple-ring nebula [of Supernova 1987A] has so far not found a satisfactory explanation.�

Meanwhile, in 2005 I explained all three rings of supernova 1987A in terms of a stellar plasma Z-pinch. Above we see the essential features of a plasma Z-pinch experiment (left); the details of the concentric Birkeland current filament cylinders (center); and the 'witness plate' resulting from the galactic Birkeland current filaments in that cylinder striking the matter in the disk expelled from the star at the focus of supernova 1987A. The bright beads are like the effect of a ring of searchlights punching through a thin cloud. The tendency for pairing of the bright circular spots and the extremely slow expansion rate of the equatorial ring suggest the Z-pinch model is correct.

A normal star will have the same Z-pinch environment as a supernova but at a much lower energy. So instead of a brilliant ring of lights in the sky, astronomers detect a �bright ribbon� of ENA�s, caused by modest excitation of matter from the Sun�s stellar �wind� by the local galactic Z-pinch.

IMAGE
>> This diagram shows a conceptual cross-section along the central axis of the stellar Z-pinch at the Sun�s position. Whether the double layers exist within or outside the heliosphere is unknown. The diameter of the encircling cylinder is unknown. That of supernova 1987A is of the order of a light-year, which would make the diameter of the heliosphere more than 600 times smaller! Note that as a rotating charged body the Sun�s magnetic field is not aligned with the interstellar magnetic field and Z-pinch axis. The Sun�s magnetic field only has influence within the tiny heliosphere but it is modulated by galactic currents. Alfv�n�s axial �double layers� (DLs) have been included although their distance from the Sun is unknown. DLs are produced in current carrying plasma and are the one region where charge separation takes place in plasma and a high voltage is generated across them (see discussion below).

The Z-pinch model offers a simple explanation for the �giant ribbon� found wrapped around the heliosphere. The Z-pinch is naturally aligned with the interstellar magnetic field. Solar �wind� ions are scattered and neutralized by electrons from the Birkeland current filaments to form ENA�s coming from the Z-pinch ring, a giant ring about the solar system and orthogonal to the interstellar magnetic field.

The Sun�s heliospheric circuit is connected to the galaxy via the central column and the disk of charged particles. The current path is traced by magnetic fields. The �open� helical magnetic fields discovered high above the Sun�s poles by the Ulysses spacecraft are supportive of Alfv�n�s stellar circuit model. And the solar �wind� would seem to connect to the broader disk of charged particles about the heliosphere.

Given the detail in this model we should expect, as more data comes in, that researchers may find in the ENA �ribbon,� bright spots, filamentary structures, and movement of the bright spots consistent with rotation of Birkeland current filament pairs and their possible coalescence.

The Science journal reports the opinion of one of the researchers that �sorting out the heliosphere�s true shape will take more time �the geometry�s tough. The shape is no doubt somewhere between the two extremes of ideal comet and pure bubble, but all agree that researchers will have to understand how the ribbon forms to know the heliosphere�s true shape.� That is true, but scientists will continue to suffer surprises while they have �no doubt� that the galactic wind and the interstellar magnetic field are the dominant forces that shape the heliosphere.

Researchers are keen to see how changes in the solar wind affect the ENA observations as the sun moves toward the maximum of its 11-year cycle. Such observations are very important. The solar cycle is controlled by its local galactic Z-pinch, so any variation in ENA�s may provide some clues about the origin of the quasi-cyclic variability in the circuit supplying DC electrical power to the Sun or �solar cycle.� The �brightness� of the ENA�s should vary, probably out of phase with the solar cycle.

In 1984 Alfv�n predicted from his circuit model of the Sun there are two double layers, one connected to each pole at some unknown distance from the Sun or heliosphere. He wrote, �As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by means of double layers. They must be replaced by particle models and circuit theory... Application to the heliospheric current systems leads to the prediction of two double layers on the sun's axis which may give radiations detectable from Earth. Double layers in space should be classified as a new type of celestial object.� � H. Alfv�n, Double Layers and Circuits in Astrophysics, IEEE Transactions On Plasma Science, Vol. PS-14, No. 6, December 1986.

There is some other research to be encouraged by this ENAs discovery, which should throw further light on the Sun�s electrical environment. The axial double layers should be detectable as nearby, fluctuating radio and cosmic ray sources. In fact their oscillation may modulate the current flow and be a source of the solar cycle. Already there has been a report of an unexplained high-energy cosmic ray �hot spot� roughly in the direction of the inferred �heliotail.� The energies of the cosmic rays are in the range possible by acceleration in a galactic double layer (Carlqvist). Confirmation may soon come from observations of high-energy cosmic-ray electrons. The electrons undergo synchrotron and inverse Compton scattering losses and thus cannot travel very far from their sources, which makes them sensitive probes of nearby galactic sources and propagation. If the diagram above is close to the real situation then we might expect cosmic-ray electrons to arrive from the double layer in the opposite direction in the sky to the nuclear cosmic rays.

IMAGE

The EU model is based on a hierarchy of repeated patterns of plasma behavior, from the size of a galaxy down to a few centimeters in the laboratory. Therefore it is subject to experimental confirmation, unlike most astrophysical theory today. So discoveries from space like this one should trigger experiments in plasma laboratories around the world instead of theorists wasting resources by conjuring up ever more complex and unlikely models based on invalid concepts of space plasma. IBEX's recent results that have taken researchers by surprise have given yet more strength to the EU model, a model that confidently predicts that the shape of the Sun�s galactic plasma environment is the hourglass, Z-pinch shape of planetary nebulae and supernovae, aligned with the local interstellar magnetic field. The beautiful symmetrical patterns that arise in plasma discharges from very simple principles renders all modeling that ignores the electrical nature of matter and the universe worthless.

Wal Thornhill

Back to top

Print friendly page