Saturday, July 7, 2007

Black Holes: Have They Reached Their Use-By-Date?

Black holes have garnered so much publicity over the years that they seem almost to have assumed themselves into existence, but on closer inspection the evidence underpinning their existence is not at all impervious to scrutiny. In fact, current research into black holes is turning up some fairly quirky results, which may prove correct Einstein's original hunch that black holes couldn't possibly exist, and ultimately show black hole advocates the door. As new observational devices and methods for detecting celestial objects become available, astonishing alternatives for phenomena normally associated with black holes - suspected to reside at the heart of most galaxies - abound. New theories include anything from dark matter or vacuum filled bubbles, to magnetic balls of plasma situated where a black hole should reside at the center of a quasar. Whether or not these theories represent a collective step toward a greater understanding of these mysterious celestial objects is anyone's guess.

To be fair, black holes (BHs) haven't really just been insinuated into reality, and scientists think that they have enough data and theory on their side to back up claims of their existence. But critics of BH theory are comforted by the knowledge that no one has yet seen a BH, and those supermassive celestial objects responsible for all manner of phenomena could in fact be anything. Theories suggesting that BHs may not even exist are bolstered further by a substantial weakness in BH theory; namely, the inability to reconcile Einstein's classical theory with quantum laws, which determine the behavior of fundamental fields and particles.

When the nuclear fuel of a star with a mass more than 3 times that of the sun runs out, it starts to collapse under the force of its own gravity, after which a singularity may form. Initially it was thought that such singularities might divulge the secrets of the universe's distant beginnings, but this, of course, turned out to be impossible. So much matter squeezed into such a small area of space creates a situation where nothing - not even light - can escape the powerful pull of gravity. Not without breaking some causal law, anyway. So getting a peek inside is out of the question.

Formed along with the singularity is what is known as an "event horizon," which Roger Penrose, Emeritus Rouse Ball Professor of Mathematics, Oxford University, says is an "essential feature" of a BH. "An observer in a space ship would notice nothing in particular happening as the horizon is crossed from the outside to the inside," writes Penrose in The Road To Reality. "Yet, as soon as that perilous journey has been undertaken, there is no return." While our hapless observer continues to be dragged in toward the singularity situated at the center, the subsequent tidal effects, says Penrose, "would mount very rapidly to infinity, totally destroying the observer in less than a minute." The infinity property associated with BHs is based on a mathematical model that predicts matter will continue to cascade into an infinitely dense singularity, where space and time no longer hold sway. This may turn out to be different if, say, some new physical laws came into existence, which may arise as a consequence of finally merging classical models with quantum laws.

As it stands, however, scientists are quite happy to accept that BHs exist because of a number of measured phenomena that are quite convincing when correlated. Why? Well, when a BH orbits a companion star, for instance, it produces distinctive intermittent x-rays as it sucks up material from its counterpart's surface. These particular x-rays are integral to detecting BHs, as scientists use the x-rays to determine the BH's distinctive size and gravitational strength. But for some scientists, a nagging doubt still persists as to the true nature of the powerful bodies that exist at the center of galaxies.

A recent deep intergalactic survey conducted by a group of European and American scientists to ferret out supermassive black holes in nearby galaxies found, to their surprise, remarkably few of them. They presumed that because they couldn't find them, they must be hiding behind thick clouds of dust, which only the strongest of x-rays could penetrate. Based on data from the European Space Agency's International Gamma Ray Astrophysics Laboratory (Integral), only 15 percent of these hidden black holes were found, which was later revised by NASA to be around 10 percent. "Integral is a telescope that should see nearby hidden black holes, but we have come up short," said Volker Beckmann, of NASA Goddard and the University of Maryland.

The problem lies in the fact that even taking into account the hidden BHs that they have found, they cannot adequately account for the quantity of cosmic background x-rays already known to exist. One theory to explain the shortfall, according to team leader Loredana Bassani, is that these hidden BHs are better at hiding than scientists first thought. "The fact that we do not see them does not necessarily mean that they are not there, just that we don't see them. Perhaps they are more deeply hidden than we think and so are therefore below even Integral's detection limit," said Bassani. Not very encouraging, so it's not surprising that there's a swathe of alternative theories beginning to surface.

But let's back up a bit to what Penrose was saying about event horizons, as he claims that they are an "essential" aspect of BHs. If event horizons did not exist the universe would no longer be protected by the singularity at a BH's center, which is a very bad thing, in case you're wondering. As we've already discovered, physical laws related to time and space cease to exist, theoretically, near a singularity, so things could get really bizarre if not for the protective shield of the event horizon. So vital is this weirdness shield that Penrose argues that no singularity can ever be "naked," a hypothesis that he calls "cosmic censorship." Bassani might be confident that BHs are out there even though no one can seem to find them, but what if someone said that they had devised a theory showing that a particular BH did not have an event horizon? Would you call it a BH or a BS theory?

If no event horizon existed it would obviously mean that the consensus on black hole theory is either flawed or that black holes don't exist in the form outlined by those theories. But astrophysicist Rudy Schild, from the Harvard-Smithsonian Center for Astrophysics, says that there is even more bad news for black hole theory. Schild's paper, entitled "Observations Supporting The Intrinsic Magnetic Moment Inside The Central Compact Object Within The Quasar Q0957+561," is concerned with the characteristic properties of one particular quasar, called Q0957+561. The scientific consensus is that quasars are powered by the accretion of matter onto supermassive black holes within the nuclei of far-flung galaxies, and to test the veracity of this consensus Schild trained no less than 14 telescopes upon the quasar. As with other investigations as this type, Schild analyzed the flickerings of the quasar and used micro-lensing to determine its scale and internal properties.

Schild crosschecked all available data relating to black hole theories with his own findings and found that all of the "plausible black hole models" were "unsatisfactory." Schild considered the findings produced by his team's analysis to be extremely important, and described the center of the quasar as a "new non-standard magnetically dominated internal structure," which he thereafter dubbed the Schild-Vakulik Structure. Schild concluded that the Schild-Vakulik structure in quasar Q0957+561 was consistent within the context of the Magnetospheric Eternally Collapsing Object (MECO) model. Subsequently, Schild concluded: "Since observations of the Schild-Vakulik structure within Q0957+561 imply that this quasar contains an observable intrinsic magnetic moment, this represents strong evidence that the quasar does not have an event horizon." The existence of a MECO coupled with the absence of an event horizon means that there is not a black hole to be seen in Schild's theory.

If Schild's theory proves to be correct it would seem that black hole theory as we know it will cease to exist. Many scientists disagree with Schild's theory, and it will be interesting to see how events unfold in regard to the Schild-Vakulik structure. However, even if Schild's theory does turn out to be wrong, it still leaves science somewhat in the dark about black holes, or whatever massive objects lie at the center of galaxies. Perhaps there is some overlap of the differing theories posited, and inconsistencies between theories arise from us not yet having the full picture. Or maybe we need to distinguish what the other 90 percent of the universe is comprised of before we can arrive at any conclusions about black holes. Only time will tell.

Denying The Existence Of Time

16 June 2005
Denying The Existence Of Time
By Rusty Rockets

Perhaps humans invented the concept of time out of mortal fear; reasoning that if time were tangible then its degenerative march could be controlled, just as mankind has tried to subdue other aspects of the natural world. Immortality would be within our grasp! But while time may be a convenient metronome that delivers neatly portioned slivers of existence to conscious beings, the idea of a ‘universal time’ is looking increasingly fanciful, at least to some physicists.

One individual, Peter Lynds, has put his reputation on the line to try and prove that thinking of time and motion in measured segments, like frames in a film, is wrong-headed. Funnily enough, that’s what his critics think of his theory. Lynds goes as far as saying that if instants, rather than intervals, of time were a cosmological truth, then none of us would be here today. In fact no physical object, no mass or energy down to the smallest of particles would ever be in motion. This is probably not the sort of immortality that our ancestors had in mind.

The most amazing thing about this whole story is that Lynds is not a trained scientist. But he does have a passionate interest in physics and he is also a huge fan of Einstein’s work. Lynds’ theory, Time and Classical and Quantum Mechanics: Indeterminacy vs. Continuity, has caused quite a commotion amongst academics, some even saying that his theory is a hoax and that Lynds doesn’t actually exist. Skepticism and scorn of Lynds’ work has continued but this barrage of criticism doesn’t look like it will shut him up anytime soon.

Much of the opposition to Lynds’ ideas can be attributed to his questioning of scientific orthodoxy. He doesn’t mind suggesting that Einstein, Hawking and other respected figures are just plain wrong. He claims some theories are redundant, such as ‘imaginary’ time, and others just need modification, such as further developing Einstein’s theories so as to iron out some of the contradictions. Most of these would take up too much space in trying to explain; so concentrating on Lynds’ main theme will be the goal here.

In the beginning there was darkness… and there was no time. Time becomes immaterial in empty space, and demonstrates clearly that without objects-in-motion - mass and energy - there is nothing to measure the relative passing of time. So how God knew what day it was in the beginning is anyone’s guess. But we digress. Time is relative to mass and energy, there is no ideal universal clock. As a concept, time cannot precede mass and energy, simply because the idea of time is reliant on the relative motions of celestial bodies. As Lynds says: “if there is no mass-energy, there is no space-time;” both are fixed and enmeshed. Because of this, time also has no direction or flow, as we conceive it subjectively; “it is the relative order of events that is important.” This is what led Lynds to claim that there is “no precise static instant in time underlying a dynamical physical process.”

The Greek mathematician Zeno conjured up a famous paradox that involved halving the distance between starting and end-points in time and space. The paradox involves a person trying to move from point A to point B. In order to move from point A, say, your doorway, to point B, say the pub, you must first reach half the distance between A and B, but before that, you must first reach half of that distance. And before that, you must first reach half of that distance and so on ad infinitum. You’ll never reach the pub! Zeno’s paradox seems to make a mockery out of divvying up time to conveniently suit scientific purposes but we know that this doesn’t happen in the real world.

For example, when you are driving in your car, your speed is relative to the road beneath you. There is no point on your journey that could be called one instant in time. It can only be an interval of time. Even if you took a photograph of the car travelling along the road, the photograph would be an interval related to the speed of the camera, perhaps a thirtieth of a second. It doesn’t matter how much you reduce the time interval, it will always still be an interval, rather than an instant.

If there are no measured instants then there is no infinity paradox, which demonstrates that there is no actual time measurement. In short, there is only relative motion between objects, and the order in which they occur. To make it even more confusing, Lynds proposes that this theory demonstrates that a body in motion has no distinct position or coordinate.

This basic account of Lynds’ theory brings us back to human perceptions of time and why the brain needs to have a concept of time. We are finite beings in an infinite universe (as far as we know) and understanding the universe requires that we are able to measure the events and objects that make up the universe. Being able to control our physical environment by allocating and referring to time in ‘instants’ is a handy way of dealing with the problem. But it seems increasingly likely that we need to change the way in which we approach, observe and evaluate the universe’s dimensions before we have any hope of understanding any of the universe’s mysteries. Perhaps Lynds’ theory is just what we need to get started.

Thursday, July 5, 2007

Rethinking Relativity


by Tom Bethell

No one has paid attention yet, but a well-respected physics journal just published an article whose conclusion, if generally accepted, will undermine the foundations of modern physics--Einstein's theory of relativity in particular. Published in Physics Letters A (December 21, 1998), the article claims that the speed with which the force of gravity propagates must be at least twenty billion times faster than the speed of light. This would contradict the special theory of relativity of 1905, which asserts that nothing can go faster than light. This claim about the special status of the speed of light has become part of the world view of educated laymen in the twentieth century.

Special relativity, as opposed to the general theory (1916), is considered by experts to be above criticism, because it has been confirmed "over and over again." But several dissident physicists believe that there is a simpler way of looking at the facts, a way that avoids the mind-bending complications of relativity. Their arguments can be understood by laymen. I wrote about one of these dissidents, Petr Beckmann, over five years ago (TAS, August 1993, and Correspondence, TAS, October 1993). The present article introduces new people and arguments. The subject is important because if special relativity is supplanted, much of twentieth-century physics, including quantum theory, will have to be reconsidered in that light.

The article in Physics Letters A was written by Tom Van Flandern, a research associate in the physics department at the University of Maryland. He also publishes Meta Research Bulletin, which supports "promising but unpopular alternative ideas in astronomy." In the 1990's, he worked as a special consultant to the Global Positioning System (GPS), a set of satellites whose atomic clocks allow ground observers to determine their position to within about a foot. Van Flandern reports that an intriguing controversy arose before GPS was even launched. Special relativity gave Einsteinians reason to doubt whether it would work at all. In fact, it works fine. (But more on that later.)

The publication of his article is a breakthrough of sorts. For years, most editors of mainstream physics journals have automatically rejected articles arguing against special relativity. This policy was informally adopted in the wake of the Herbert Dingle controversy. A professor of science at the University of London, Dingle had written a book popularizing special relativity, but by the 1960's he had become convinced that it couldn't be true. So he wrote another book, Science at the Crossroads (1972), contradicting the first. Scientific journals, especially Nature, were bombarded with his (and others') letters.

An editor of Physics Letters A promised Van Flandern that reviewers would not be allowed to reject his article simply because it conflicted with received wisdom. Van Flandern begins with the "most amazing thing" he learned as a graduate student of celestial mechanics at Yale: that all gravitational interactions must be taken as instantaneous. At the same time, students were also taught that Einstein's special relativity proved that nothing could propagate faster than light in a vacuum. The disagreement "sat there like an irritant," Van Flandern told me. He determined that one day he would find its resolution. Today, he thinks that a new interpretation of relativity may be needed.

The argument that gravity must travel faster than light goes like this. If its speed limit is that of light, there must be an appreciable delay in its action. By the time the Sun's "pull" reaches us, the Earth will have "moved on" for another 8.3 minutes (the time of light travel). But by then the Sun's pull on the Earth will not be in the same straight line as the Earth's pull on the Sun. The effect of these misaligned forces "would be to double the Earth's distance from the Sun in 1200 years." Obviously, this is not happening. The stability of planetary orbits tells us that gravity must propagate much faster than light. Accepting this reasoning, Isaac Newton assumed that the force of gravity must be instantaneous.

Astronomical data support this conclusion. We know, for example, that the Earth accelerates toward a point 20 arc-seconds in front of the visible Sun--that is, toward the true, instantaneous direction of the Sun. Its light comes to us from one direction, its "pull" from a slightly different direction. This implies different propagation speeds for light and gravity.

It might seem strange that something so fundamental to our understanding of physics can still be a matter of debate. But that in itself should encourage us to wonder how much we really know about the physical world. In certain Internet discussion groups, "the most frequently asked question and debated topic is 'What is the speed of gravity?'" Van Flandern writes. It is heard less often in the classroom, but only "because many teachers and most textbooks head off the question." They understand the argument that it must go very fast indeed, but they also have been trained not to let anything exceed Einstein's speed limit.

So maybe there is something wrong with special relativity after all.

In The ABC of Relativity (1925), Bertrand Russell said that just as the Copernican system once seemed impossible and now seems obvious, so, one day, Einstein's relativity theory "will seem easy." But it remains as "difficult" as ever, not because the math is easy or difficult (special relativity requires only high-school math, general relativity really is difficult), but because elementary logic must be abandoned. "Easy Einstein" books remain baffling to almost all. The sun-centered solar system, on the other hand, has all along been easy to grasp. Nonetheless, special relativity (which deals with motion in a straight line) is thought to be beyond reproach. General relativity (which deals with gravity, and accelerated motion in general) is not regarded with the same awe. Stanford's Francis Everitt, the director of an experimental test of general relativity due for space-launch next year, has summarized the standing of the two theories in this way: "I would not be at all surprised if Einstein's general theory of relativity were to break down," he wrote. "Einstein himself recognized some serious shortcomings in it, and we know on general grounds that it is very difficult to reconcile with other parts of modern physics. With regard to special relativity, on the other hand, I would be much more surprised. The experimental foundations do seem to be much more compelling." This is the consensus view.

Dissent from special relativity is small and scattered. But it is there, and it is growing. Van Flandern's article is only the latest manifestation. In 1987, Petr Beckmann, who taught at the University of Colorado, published Einstein Plus Two, pointing out that the observations that led to relativity can be more simply reinterpreted in a way that preserves universal time. The journal he founded, Galilean Electrodynamics, was taken over by Howard Hayden of the University of Connecticut (Physics), and is now edited by Cynthia Kolb Whitney of the Electro-Optics Technology Center at Tufts. Hayden held colloquia on Beckmann's ideas at several New England universities, but could find no physicist who even tried to put up an argument.

A brief note on Einstein's most famous contribution to physics--the formula that everyone knows. When they hear that heresy is in the air, some people come to the defense of relativity with this question: "Atom bombs work, don't they?" They reason as follows: The equation E = mc2 was discovered as a byproduct of Einstein's (special) theory of relativity. (True.) Relativity, they conclude, is indispensable to our understanding of the way the world works. But that does not follow. Alternative derivations of the famous equation dispense with relativity. One such was provided by Einstein himself in 1946. And it is simpler than the relativistic rigmarole. But few Einstein books or biographies mention the alternative. They admire complexity, and cling to it.

Consider Clifford M. Will of Washington University, a leading proponent of relativity today. "It is difficult to imagine life without special relativity," he says in Was Einstein Right? "Just think of all the phenomena or features of our world in which special relativity plays a role. Atomic energy, both the explosive and the controlled kind. The famous equation E=mc2 tells how mass can be converted into extraordinary amounts of energy." Note the misleading predicate, "plays a role." He knows that the stronger claim, "is indispensable," would be pounced on as inaccurate. Is there an alternative way of looking at all the facts that supposedly would be orphaned without relativity? Is there a simpler way? A criterion of simplicity has frequently been used as a court of appeal in deciding between theories. If it is made complex enough, the Ptolemaic system can predict planetary positions correctly. But the Sun-centered system is much simpler, and ultimately we prefer it for that reason.

Tom Van Flandern says the problem is that the Einstein experts who have grown accustomed to "Minkowski diagrams and real relativistic thinking" find the alternative of universal time and "Galilean space" actually more puzzling than their own mathematical ingenuities. Once relativists have been thoroughly trained, he says, it's as difficult for them to rethink the subject in classical terms as it is for laymen to grasp time dilation and space contraction. For laymen, however, and for those physicists who have not specialized in relativity, which is to say the vast majority of physicists, there's no doubt that the Galilean way is far simpler than the Einsteinian.

Special relativity was first proposed as a way of sidestepping the great difficulty that arose in physics as a result of the Michelson-Morley experiment (1887). Clerk Maxwell had shown that light and radio waves share the same electromagnetic spectrum, differing only in wave length. Sea waves require water, sound waves air, so, it was argued, electromagnetic waves must have their own medium to travel in. It was called the ether. "There can be no doubt that the interplanetary and interstellar spaces are not empty," Maxwell wrote, "but are occupied by a material substance or body, which is certainly the largest, and probably the most uniform body of which we have any knowledge." As today's dissidents see things, it was Maxwell's assumption of uniformity that was misleading.

The experiment of Michelson and Morley tried to detect this ether. Since the Earth in its orbital motion must plow through it, an "ether wind" should be detectable, just as a breeze can be felt outside the window of a moving car. Despite repeated attempts, however, no ethereal breeze could be felt. A pattern of interference fringes was supposed to shift when Michelson's instrument was rotated. But there was no fringe shift.

Einstein explained this result in radical fashion. There is no need of an ether, he said. And there was no fringe shift because the speed of an approaching light wave is unaffected by the observer's motion. But if the speed of light always remains the same, time itself would have to slow down, and space contract to just the amount needed to ensure that the one divided by the other--space divided by time--always gave the same value: the unvarying speed of light. The formula that achieved this result was quite simple, and mathematically everything worked out nicely and agreed with observation.

The skeptical, meanwhile, were placated with this formula: "I know it seems odd that time slows down and space contracts when things move, but don't worry, a measurable effect only occurs at high velocities--much higher than anything we find in everyday life. So for all practical purposes we can go on thinking in the same old way." (Meanwhile, space and time have been subordinated to velocity. Get used to it.)

Now we come to some modern experimental findings. Today we have very accurate clocks, accurate to a billionth of a second a day. The tiny differentials predicted by Einstein are now measurable. And the interesting thing is this: Experiments have shown that atomic clocks really do slow down when they move, and atomic particles really do live longer. Does this mean that time itself slows down? Or is there a simpler explanation?

The dissident physicists I have mentioned disagree about various things, but they are beginning to unite behind this proposition: There really is an ether, in which electromagnetic waves travel, but it is not the all-encompassing, uniform ether proposed by Maxwell. Instead, it corresponds to the gravitational field that all celestial bodies carry about with them. Close to the surface (of sun, planet, or star) the field, or ether, is relatively more dense. As you move out into space it becomes more attenuated. Beckmann's Einstein Plus Two introduces this hypothesis, I believe for the first time, and he told me it was first suggested to him in the 1950's by one of his graduate students, Jiri Pokorny, at the Institute of Radio Engineering and Electronics in Prague. Pokorny later joined the department of physics at Prague's Charles University, and today is retired. I believe that all the facts that seem to require special or general relativity can be more simply explained by assuming an ether that corresponds to the local gravitational field. Michelson found no "ether wind," or fringe shift, because of course the Earth's gravitational field moves forward with the Earth. As for the bending of starlight near the Sun, the confirmation of general relativity that made Einstein world-famous, it is easily explained given a non-uniform light medium. It is a well known law of physics that wave fronts do change direction when they enter a denser medium. According to Howard Hayden, refracted starlight can be derived this way "with a few lines of high school algebra." And derived exactly. The tensor calculus and Riemannian geometry of general relativity gives only an approximation. Likewise the "Shapiro Time-Delay," observed when radar beams pass close to the Sun and bounce back from Mercury. Some may prefer to try to understand all this in terms of the "curvature of space-time," to use the Einstein formulation (unintelligible to laymen, I believe). But they should know that a far simpler alternative exists.

The advance of the perihelion of Mercury's orbit, another famous confirmation of general relativity, is worth a closer look. (The perihelion is the point in the orbit closest to a sun.) Graduate theses may one day be written about this peculiar episode in the history of science. In his book, Subtle Is the Lord, Abraham Pais reports that when Einstein saw that his calculations agreed with Mercury's orbit, "he had the feeling that something actually snapped in him.... This experience was, I believe, by far the strongest emotional experience in Einstein's scientific life, perhaps in all his life. Nature had spoken to him." Fact: The equation that accounted for Mercury's orbit had been published 17 years earlier, before relativity was invented. The author, Paul Gerber, used the assumption that gravity is not instantaneous, but propagates with the speed of light. After Einstein published his general-relativity derivation, arriving at the same equation, Gerber's article was reprinted in *Annalen der Physik* (the journal that had published Einstein's relativity papers). The editors felt that Einstein should have acknowledged Gerber's priority. Although Einstein said he had been in the dark, it was pointed out that Gerber's formula had been published in Mach's Science of Mechanics, a book that Einstein was known to have studied. So how did they both arrive at the same formula?

Tom Van Flandern was convinced that Gerber's assumption (gravity propagates with the speed of light) was wrong. So he studied the question. He points out that the formula in question is well known in celestial mechanics. Consequently, it could be used as a "target" for calculations that were intended to arrive at it. He saw that Gerber's method "made no sense, in terms of the principles of celestial mechanics." Einstein had also said (in a 1920 newspaper article) that Gerber's derivation was "wrong through and through."

So how did Einstein get the same formula? Van Flandern went through his calculations, and found to his amazement that they had "three separate contributions to the perihelion; two of which add, and one of which cancels part of the other two; and you wind up with just the right multiplier." So he asked a colleague at the University of Maryland, who as a young man had overlapped with Einstein at Princeton's Institute for Advanced Study, how in his opinion Einstein had arrived at the correct multiplier. This man said it was his impression that, "knowing the answer," Einstein had "jiggered the arguments until they came out with the right value."

If the general relativity method is correct, it ought to apply everywhere, not just in the solar system. But Van Flandern points to a conflict outside it: binary stars with highly unequal masses. Their orbits behave in ways that the Einstein formula did not predict. "Physicists know about it and shrug their shoulders," Van Flandern says. They say there must be "something peculiar about these stars, such as an oblateness, or tidal effects." Another possibility is that Einstein saw to it that he got the result needed to "explain" Mercury's orbit, but that it doesn't apply elsewhere.

The simplest way to understand all this "without going crazy," Van Flandern says, is to discard Einsteinian relativity and to assume that "there is a light-carrying medium." When a clock moves through this medium "it takes longer for each electron in the atomic clock to complete its orbit." Therefore it makes fewer "ticks" in a given time than a stationary clock. Moving clocks slow down, in short, because they are "ploughing through this medium and working more slowly." It's not time that slows down. It's the clocks. All the experiments that supposedly "confirm" special relativity do so because all have been conducted in laboratories on the Earth's surface, where every single moving particle, or moving atomic clock, is in fact "ploughing through" the Earth's gravitational field, and therefore slowing down.

Both theories, Einsteinian and local field, would yield the same results. So far. Now let's turn back to the Global Positioning System. At high altitude, where the GPS clocks orbit the Earth, it is known that the clocks run roughly 46,000 nanoseconds (one-billionth of a second) a day faster than at ground level, because the gravitational field is thinner 20,000 kilometers above the Earth. The orbiting clocks also pass through that field at a rate of three kilometers per second--their orbital speed. For that reason, they tick 7,000 nanoseconds a day slower than stationary clocks.

To offset these two effects, the GPS engineers reset the clock rates, slowing them down before launch by 39,000 nanoseconds a day. They then proceed to tick in orbit at the same rate as ground clocks, and the system "works." Ground observers can indeed pin-point their position to a high degree of precision. In (Einstein) theory, however, it was expected that because the orbiting clocks all move rapidly and with varying speeds relative to any ground observer (who may be anywhere on the Earth's surface), and since in Einstein's theory the relevant speed is always speed relative to the observer, it was expected that continuously varying relativistic corrections would have to be made to clock rates. This in turn would have introduced an unworkable complexity into the GPS. But these corrections were not made. Yet "the system manages to work, even though they use no relativistic corrections after launch," Van Flandern said. "They have basically blown off Einstein."

The latest findings are not in agreement with relativistic expectations. To accommodate these findings, Einsteinians are proving adept at arguing that if you look at things from a different "reference frame," everything still works out fine. But they have to do the equivalent of standing on their heads, and it's not convincing. A simpler theory that accounts for all the facts will sooner or later supplant one that looks increasingly Rube Goldberg-like. I believe that is now beginning to happen.

Dingle's Question:

University of London Professor Herbert Dingle showed why special relativity will always conflict with logic, no matter when we first learn it. According to the theory, if two observers are equipped with clocks, and one moves in relation to the other, the moving clock runs slower than the non-moving clock. But the relativity principle itself (an integral part of the theory) makes the claim that if one thing is moving in a straight line in relation to another, either one is entitled to be regarded as moving. It follows that if there are two clocks, A and B, and one of them is moved, clock A runs slower than B, and clock B runs slower than A. Which is absurd.

Dingle's Question was this: Which clock runs slow? Physicists could not agree on an answer. As the debate raged on, a Canadian physicist wrote to Nature in July 1973: "Maybe the time has come for all of those who want to answer to get together and to come up with one official answer. Otherwise the plain man, when he hears of this matter, may exercise his right to remark that when the experts disagree they cannot all be right, but they can all be wrong."

The problem has not gone away. Alan Lightman of MIT offers an unsatisfactory solution in his Great Ideas in Physics (1992). "[T]he fact that each observer sees the other clock ticking more slowly than his own clock does not lead to a contradiction. A contradiction could arise only if the two clocks could be put back together side by side at two different times." But clocks in constant relative motion in a straight line "can be brought together only once, at the moment they pass." So the theory is protected from its own internal logic by the impossibility of putting it to a test. Can such a theory be said to be scientific? --TB

Tom Van Flandern's Meta Research Bulletin ($15) and his book, Dark Matter, Missing Planets ($24.50), may be obtained from P.O. Box 15186, Chevy Chase, MD 20825; Petr Beckmann's Einstein Plus Two ($40) from Golem Press, P.O. Box 1342, Boulder, CO 80306. Beckmann's book is highly technical; Van Flandern's is mostly accessible to laymen. Tom Bethell is TAS's Washington correspondent. His new book, The Noblest Triumph, was recently published by St. Martin's Press. (Posted 4/28/99) (The American Spectator, April 1999).

Observational Cosmology: From High Redshift Galaxies to the Blue Pacific


Sources:
  • December, 2005 PROGRESS IN PHYSICS Volume 3

Birth of galaxies

Observed: Ejection of high redshift, low luminosity quasars from active galaxy nuclei.

Shown by radio and X-ray pairs, alignments and luminous connecting filaments. Emergent velocities are much less than intrinsic redshift. Stripping of radio plasmas. Probabilities of accidental association negligible. See Arp, 20034 for customarily supressed details.

Observed: Evolution of quasars into normal companion galaxies.

The large number of ejected objects enables a view of empirical evolution from high surface brightness quasars through compact galaxies. From gaseous plasmoids to formation of atoms and stars. From high redshift to low.

Figure 1

..ejection wake from the center of NGC 7319..

Enhanced Hubble Space Telescope image showing ejection wake from the center of NGC 7319 (redshift z = 0.022) to within about 3.4 arcsec of the quasar (redshift z = 2.11)

Observed: Younger objects have higher intrinsic redshifts.

In groups, star forming galaxies have systematically higher redshifts, e. g. spiral galaxies. Even companions in evolved groups like our own Andromeda Group or the nearby M81 group still have small, residual redshift excesses relative to their parent.

Observed: X-ray and radio emission generally indicate early evolutionary stages and intrinsic redshift.

Plasmoids ejected from an active nucleus can fragment or ablate during passage through galactic and intergalactic medium which results in the forming of groups and clusters of proto galaxies. The most difficult result for astronomers to accept is galaxy clusters which have intrinsic redshifts. Yet the association of clusters with lower redshift parents is demonstrated in Arp and Russell, 20011. Individual cases of strong X-ray clusters are exemplified by elongations and connections as shown in the ejecting galaxy Arp220, in Abell 3667 and from NGC 720 (again, summarized in Arp, 20034). Motion is confirmed by bow shocks and elongation is interpreted as ablation trails. In short — if a quasar evolves into a galaxy, a broken up quasar evolves into a group of galaxies.

Redshift is the key

Observed: The whole quasar or galaxy is intrinsically redshifted.

Objects with the same path length to the observer have much different redshifts and all parts of the object are shifted closely the same amount. Tired light is ruled out and also gravitational redshifting.

The fundamental assumption: Are particle masses constant?

The photon emitted in an orbital transition of an electron in an atom can only be redshifted if its mass is initially small. As time goes on the electron communicates with more and more matter within a sphere whose limit is expanding at velocity c. If the masses of electrons increase, emitted photons change from an initially high redshift to a lower redshift with time (see Narlikar and Arp, 19936)

Predicted consequences: Quasars are born with high redshift and evolve into galaxies of lower redshift.

Near zero mass particles evolve from energy conditions in an active nucleus. (If particle masses have to be created sometime, it seems easier to grow things from a low mass state rather than producing them instantaneously in a finished state.)

DARK MATTER: The establishment gets it right, sort of.

In the Big Bang, gas blobs in the initial, hot universe have to condense into things we now see like quasars and galaxies. But we know hot gas blobs just go poof! Lots of dark matter (cold) had to be hypothesized to condense the gas cloud. They are still looking for it.

But low mass particles must slow their velocities in order to conserve momentum as their mass grows. Temperature is internal velocity. Thus the plasmoid cools and condenses its increasing mass into a compact quasar. So maybe we have been observing dark matter ever since the discovery of quasars! After all, what's in a name?

Figure 2

Schematic representation of quasars and companion galaxies..

Schematic representation of quasars and companion galaxies found associated with central galaxies from 1966 to present. The progression of characteristics is empirical but is also required by the variable mass theory of Narlikar and Arp, 19936

Observed: Ambarzumian sees new galaxies.

In the late 1950's when the prestigious Armenian astronomer, Viktor Ambarzumian was president of the International Astronomical Union he said that just looking at pictures convinced him that new galaxies were ejected out of old. Even now astronomers refuse to discuss it, saying that big galaxies cannot come out of other big galaxies. But we have just seen that the changing redshift is the key that unlocks the growth of new galaxies with time. They are small when they come from the small nucleus. Ambarzumian's superfluid just needed the nature of changing redshift. But Oort and conventional astronomers preferred to condense hot gas out of a hot expanding universe.

Observed: The Hubble Relation.

An article of faith in current cosmology is that the relation between faintness of galaxies and their redshift, the Hubble Relation, means that the more distant a galaxy is the faster it is receding from us. With our galaxy redshifts a function of age, however, the look back time to a distant galaxy shows it to us when it was younger and more intrinsically redshifted. No Doppler recession needed!

The latter non-expanding universe is even quantitative in that Narlikar's general solution of the General Relativistic equations (m = t2) gives a Hubble constant directly in term of the age of our own galaxy. (H0 = 51 km/sec × Mpc for age of our galaxy = 13 billion years). The Hubble constant observed from the most reliable Cepheid distances is H0 = 55 (Arp, 20023). What are the chances of obtaining the correct Hubble constant from an incorrect theory with no adjustable parameters? If this is correct there is negligible room for expansion of the universe.

Observed: The current Hubble constant is too large.

A large amount of observing time on the Hubble Space Telescope was devoted to observing Cepheid variables whose distances divided into their redshifts gave a definitive value of H0 = 72. That required the reintroduction of Einstein's cosmological constant to adjust to the observations. But H0 = 72 was wrong because the higher redshift galaxies in the sample included younger (ScI) galaxies which had appreciable intrinsic redshifts.

Independent distances to these galaxies by means of rotational luminosity distances (Tully-Fisher distances) also showed this class of galaxies had intrinsic redshifts which gave too high a Hubble constant (Russell, 20028) In fact well known clusters of galaxies gives H0's in the 90's (Russell, private communication) which clearly shows that neither do we have a correct distance scale or understanding of the nature of galaxy clusters.

DARK ENERGY: Expansion now claimed to be acceleration.

As distance measures were extended to greater distances by using Supernovae as standard candles it was found that the distant Supernovae were somewhat too faint. This led to a smaller H0 and hence an acceleration compared to the supposed present day H0 = 72. Of course the younger Supernovae could be intrinsically fainter and also we have seen the accepted present day H0 is too large. Nevertheless astronomers have again added a huge amount of undetected substance to the universe to make it agree with properties of a disproved set of assumptions. This is called the accordance model but we could easily imagine another name for it.

Physics — local and universal

Instead of extrapolating our local phenomena out to the universe one might more profitably consider our local region as a part of the physics of the universe.

Note: Flat space, no curves, no expansion.

The general solution of energy/momentum conservation (relativistic field equations) which Narlikar made with m = t2 gives a Euclidean, threedimensional, uncurvedspace. The usual assumption that particle masses are constant in time only projects our local, snapshot view onto the rest of the universe.

In any case it is not correct to solve the equations in a non-general case. In that case the usual procedure of assigning curvature and expansion properties to the mathematical term space (which has no physical attributes!) is only useful for excusing the violations with the observations caused by the inappropriate assumption of constant elementary masses.

Consequences: Relativity theory can furnish no gravity.

Space (nothing) can not be a rubber sheet. Even if there could be a dimple — nothing would roll into it unless there was a previously existing pull of gravity. We need to find a plausible cause for gravity other than invisible bands pulling things together.

Required: Very small wave/particles pushing against bodies.

In 1747 the Genevoise philosopher-physicist George-Louis Le Sage postulated that pressure from the medium which filled space would push bodies together in accordance with the Newtonian Force = 1/r2 law. Well before the continuing fruitless effort to unify Relativistic gravity and quantum gravity, Le Sage had solved the problem by doing away with the need to warp space in order to account for gravity.

Advantages: The Earth does not spiral into the Sun.

Relativistic gravity is assigned an instantaneous component as well as a component that travels with the speed of light, c. If gravity were limited to c, the Earth would be rotating around the Sun where it was about 8 minutes ago. By calculating under the condition that no detectable reduction in the size of the Earth's orbit has been observed, Tom Van Flandern arrives at the minimum speed of gravity of 2 × 1010 c. We could call these extremely fast, extremely penetrating particles gravitons.

A null observation saves causality.

The above reasoning essentially means that gravity can act as fast as it pleases, but not instantaneously because that would violate causality. This is reassuring since causality seems to be an accepted property of our universe (except for some early forms of quantum theory).

Black holes into white holes.

In its usual perverse way all the talk has been about black holes and all the observations have been about white holes. Forget for a moment that from the observer's viewpoint it would take an infinity of time to form a black hole. The observations show abundant material being ejected from stars, nebulae, galaxies, quasars. What collimates these out of a region in which everything is supposed to fall into? (Even ephemeral photons of light.) After 30 years of saying nothing comes out of black holes, Stephen Hawking now approaches the observations saying maybe a little leaks out.

Question: What happens when gravitons encounter a black hole?

If the density inside the concentration of matter is very high the steady flux of gravitons absorbed will eventually heat the core and eventually this energy must escape. After all it is only a local concentration of matter against the continuous push of the whole of intergalactic space. Is it reasonable to say it will escape through the path of least resistance, for example through the flattened pole of a spinning sphere which is usual picture of the nucleus? Hence the directional nature of the observed plasmoid ejections.

Planets and people

In our own solar system we know the gas giant planets increase in size as we go in toward the Sun through Neptune, Uranus, Saturn and Jupiter. On the Earth's side of Jupiter, however, we find the asteroid belt. It does not take an advanced degree to come to the idea that the asteroids are the remains of a broken up planet. But how? Did something crash into it? What does it mean about our solar system?

Mars: The Exploding Planet Hypothesis.

We turn to a real expert on planets, Tom Van Flandern. For years he has argued in convincing detail that Mars, originally bigger than Earth, had exploded visibly scarring the surface of its moon, the object we now call Mars. One detail should be especially convincing, namely that the present Mars, unable to hold an atmosphere, had long been considered devoid of water, a completely arid desert. But recent up-close looks have revealed evidence for water dumps, lots of water in the past which rapidly went away. Where else could this water have come from except the original, close-by Mars as it exploded?

For me the most convincing progression is the increasing masses of the planets from the edge of the planetary system toward Jupiter and then the decreasing masses from Jupiter through Mercury. Except for the present Mars! But that continuity would be preserved with an original Mars larger than Earth and its moon larger than the Earth's moon.

As for life on Mars, the Viking lander reported bacteria but the scientist said no. Then there was controversy about organic forms in meteorites from Mars. But the most straight forward statement that can be made is that features have now been observed that look artificial to some. Obviously no one is certain at this point but most scientists are trained to stop short of articulating the obvious.

Gravitons: Are planets part of the universe?

If a universal sea of very small, very high speed gravitons are responsible for gravity in galaxies and stars would not these same gravitons be passing through the solar system and the planets in it? What would be the effect if a small percentage were, over time, absorbed in the cores of planets?

Speculation: What would we expect?

Heating the core of a gas giant would cause the liquid/gaseous planet to expand in size. But if the core of a rocky planet would be too rigid to expand it would eventually explode. Was the asteroid planet the first to go? Then the original Mars? And next the Earth?

Geology: Let's argue about the details.

Originally it was thought the Earth was flat. Then spherical but with the continents anchored in rock. When Alfred Wegener noted that continents fitted together like jigsaw puzzle and therefore had been pulled apart, it was violently rejected because geologists said they were anchored in basaltic rock. Finally it was found that the Atlantic trench between the Americas and Africa/Europe was opening up at a rate of just about right for the Earth's estimated age (Kokus, 20025). So main stream geologists invented plate tectonics where the continents skated blythly around on top of this anchoring rock!

In 1958 the noted Geologist S. Warren Carey and in 1965 K. M. Creer (in the old, usefully scientific Nature Magazine) were among those who articulated the obvious, namely that the Earth is expanding. The controversy between plate tectonics and expanding Earth has been acrid ever since. (One recent conference proceedings by the latter adherents is Why Expanding Earth? (Scalera and Jacob, 20037).

Let's look around us.

The Earth is an obviously active place. Volcanos, earthquakes, island building. People seem to agree the Atlantic is widening and the continents separating. But the Pacific is violently contested with some satellite positioning claiming no expansion. I remember hearing S. Warren Carey painstakingly interpreting maps of the supposed subduction zone where the Pacific plate was supposed to be diving under the Andean land mass of Chile. He argued that there was no debris scraped off the supposedly diving Pacific Plate. But in any case, where was the energy coming from to drive a huge Pacific plate under the massive Andean plate?

My own suggestion about this is that the (plate) is stuck, not sliding under. Is it possible that the pressure from the Pacific Basin has been transmitted into the coastal ranges of the Americas where it is translated into mountain building? (Mountain building is a particularly contentious disagreement between static and expanding Earth proponents.)

It is an impressive, almost thought provoking sight, to see hot lava welling up from under the southwest edge of the Big Island of Hawaii forming new land mass in front of our eyes. All through the Pacific there are underground vents, volcanos, mountain and island building. Is it possible this upwelling of mass in the central regions of the Pacific is putting pressure on the edge? Does it represent the emergence of material comparable to that along the Mid Atlantic ridge on the other side of the globe?

The future: Life as an escape from danger.

The galaxy is an evolving, intermittently violent environment. The organic colonies that inhabit certain regions within it may or may not survive depending on how fast they recognize danger and how well they adapt, modify it or escape from it. Looking out over the beautiful blue Pacific one sees tropical paradises. On one mountain top, standing on barely cool lava, is the Earth's biggest telescope. Looking out in the universe for answers. Can humankind collectively understand these answers? Can they collectively ensure their continued appreciation of the beauty of existence.

References:

  1. Arp H. and Russell D. G. A possible relationship between quasars and clusters of galaxies. Astrophysical Journal, 2001, v. 549, 802-819
  2. Arp H. Pushing Gravity, ed. by M. R. Edwards, 2002, 1.
  3. Arp H. Arguments for a Hubble constant near H0 = 55. Astrophysical Journal, 2002, 571, 615ֶ18.
  4. Arp H. Catalog of discordant redshift associations. Apeiron, Montreal, 2003.
  5. Kokus M. Pushing Gravity, ed. by M. R. Edwards, 2002, 285.
  6. Narlikar J. and Arp H. Flat spacetime cosmology — a unified framework for extragalactic redshifts. Astrophysical Journal, 1993, 405, 51-56.
  7. Scalera G. and Jacob K.-H. (editors). Why expanding Earth? Nazionale di Geofisica e Vulcanologoia, Technisch Univ. Berlin, publ. INGV Roma, Italy, 2003.
  8. Russell D. G. Morphological type dependence in the Tully-Fisher relationship. Astrophysical Journal, 2004, v. 607, 241-246.
  9. Van Flandern T. Dark matter, missing planets and new comets. 2nd ed., North Atlantic Books, Berkely, 1999.
  10. Van Flandern T. Pushing Gravity, ed. by M. R. Edwards, 2002, 93.